Lipschitz Numbers: A Medium for Delay Estimation
نویسندگان
چکیده
The paper deals with problem of estimating input channel delay in nonlinear system with a model-free approach. The proposed method is based on Lipschitz theory. It is an extension to the Lipschitz method which was proposed for determining the order of a model. Our algorithm consists of two parts which in the first one estimation is made on the proper number of dynamics on the input and in the second part the pure delay of the input is obtained. The method is applied for estimation of the delay of two different models and the estimation was as accurate as possible.
منابع مشابه
On time-dependent neutral stochastic evolution equations with a fractional Brownian motion and infinite delays
In this paper, we consider a class of time-dependent neutral stochastic evolution equations with the infinite delay and a fractional Brownian motion in a Hilbert space. We establish the existence and uniqueness of mild solutions for these equations under non-Lipschitz conditions with Lipschitz conditions being considered as a special case. An example is provided to illustrate the theory
متن کاملITERATIVE METHOD FOR SOLVING TWO-DIMENSIONAL NONLINEAR FUZZY INTEGRAL EQUATIONS USING FUZZY BIVARIATE BLOCK-PULSE FUNCTIONS WITH ERROR ESTIMATION
In this paper, we propose an iterative procedure based on two dimensionalfuzzy block-pulse functions for solving nonlinear fuzzy Fredholm integralequations of the second kind. The error estimation and numerical stabilityof the proposed method are given in terms of supplementary Lipschitz condition.Finally, illustrative examples are included in order to demonstrate the accuracyand convergence of...
متن کاملOn global exponential stability preservation under sampling for globally Lipschitz time-delay systems
The paper shows that the global exponential stability property is preserved, under suitably fast sampling and small input-delay, whenever the dynamics of the time-delay system at hand and the related stabilizing (in continuous-time) state feedback are described by globally Lipschitz maps. The Halanay’s inequality is used in order to prove this result. Continuous-time, possibly non-affine in the...
متن کاملBracketing Numbers of Convex Functions on Polytopes
We study bracketing numbers for spaces of bounded convex functions in the Lp norms. We impose no Lipschitz constraint. Previous results gave bounds when the domain of the functions is a hyperrectangle. We extend these results to the case wherein the domain is a polytope. Bracketing numbers are crucial quantities for understanding asymptotic behavior for many statistical nonparametric estimators...
متن کاملLipschitz functions and fuzzy number approximations
We prove that some important properties of convex subsets of vector topological spaces remain valid in the space of fuzzy numbers endowed with the Euclidean distance. We use these results to obtain a characterization of fuzzy number-valued Lipschitz functions. This fact helps us to find the best Lipschitz constant of the trapezoidal approximation operator preserving the value and ambiguity intr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008